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The nonlinear evolution of a pair of initially linear oblique waves in a high-Reynolds- 
number shear layer is studied. Attention is focused on times when disturbances 
of amplitude e have O(efR) growth rates, where R is the Reynolds number. The 
development of a pair of oblique waves is then controlled by nonlinear critical- 
layer effects (Goldstein & Choi 1989). Viscous effects are included by studying the 
distinguished scaling 6 = O(R-'). When viscosity is not too large, solutions to the 
amplitude equation develop a finite-time singularity, indicating that an explosive 
growth can be induced by nonlinear effects; we suggest that such explosive growth 
is the precursor to certain of the bursts observed in experiments on Stokes layers 
and other shear layers. Increasing the importance of viscosity generally delays the 
occurrence of the finite-time singularity, and sufficiently large viscosity may lead to 
the disturbance decaying exponentially. For the special case when the streamwise and 
spanwise wavenumbers are equal, the solution can evolve into a periodic oscillation. 
A link between the unsteady critical-layer approach to high-Reynolds-number flow 
instability, and the wave/vortex approach of Hall & Smith (1991), is identified. 

1 Introduction 
The aim of this paper is to explain one of the mechanisms by which nonlinear 

effects can play a role in the development of three-dimensional disturbances in high- 
Reynolds-number shear layers. The analysis applies to any 'nearly parallel' shear 
layer which is inviscidly unstable. In particular it applies both to shear layers that 
slowly develop downstream, e.g. the free shear layer behind a splitter plate, and to 
shear layers that slowly evolve in time, e.g. a Stokes layer. Where appropriate we 
will fix ideas by applying the theory to Stokes layers, i.e. the flow generated above a 
sinusoidally oscillating plane wall. 

1.1. The stability of Stokes layers 
The Stokes layer is one of the simplest exact unsteady solutions of the Navier-Stokes 
equations. Its instability has been studied as a paradigm of the instability of unsteady 
(periodic) flows. Although the flow is unidirectional, a conventional normal-mode 
approach to the linear stability of the flow is not possible due to the unsteadiness of 
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the basic state. Instead von Kerczek & Davis (1974) and Hall (1978) used Floquet 
theory to seek linear disturbances which grow over a complete period. However, 
they found that over a full period the flow was stable at all Reynolds number 
investigated. At the highest end of the range studied this included Reynolds numbers 
for which instabilities have been observed experimentally (e.g. Merkli & Thomann 
1975). 

This paradox has been partly resolved by Tromans (1977) and Cowley (1987) who 
argued that at high Reynolds numbers the rapid growth of small high-frequency 
disturbances over part of a period can lead to nonlinear effects preventing the linear 
decay over a whole period (see also Hall 1983). This idea was developed by Wu 
& Cowley (1993) (see also Wu 1991) for two-dimensional disturbances using the 
unsteady, or non-equilibrium, critical-layer approach of Hickernell (1984), Churilov 
& Shukhman (1988), Goldstein & Leib (1989) and others. In particular, following 
Goldstein & Leib (1 989) they found that nonlinear interactions inside the critical 
layers could affect the evolution of disturbances sufficiently to cause the amplitude 
to 'blow-up' in a finite time. Unfortunately, although the most unstable linear 
disturbances in Stokes layers are two-dimensional, there are as yet no sufficiently 
well-controlled experiments to compare this theory with. Indeed to the best of our 
knowledge there are no experiments on Stokes layers with controlled two-dimensional 
disturbances. In the experiments that have been performed the disturbances are 
three-dimensional. 

Of course the importance of three-dimensionality has long been realized in transi- 
tion. For instance, three-dimensional perturbations are the most unstable disturbances 
in compressible supersonic shear layers. Further, in the case of the Tollmien- 
Schlichting instability of subsonic boundary layers, disturbances are predominantly 
two-dimensional only in carefully controlled experiments, e.g. Schubauer & Skramstad 
(1947), Nishioka, Iida & Ichikawa (1975). Even then two-dimensional perturbations 
dominate only in the early stages of transition, with three-dimensional disturbances 
growing to significance downstream, e.g. Klebanoff, Tidstrom & Sargent (1 962), 
Kachanov & Levchenko (1984), Kachanov (1987), Saric & Thomas (1984). 

Here we extend our analysis of instability and transition in Stokes layers to three- 
dimensional disturbances consisting of a pair of oblique waves. However, in order to 
maintain maximum generality we develop our theory for a general velocity profile, 
and then specialize to Stokes layers in the conclusions. 

As in any three-dimensional nonlinear stability analysis a number of theoretical 
methods are potentially available. One of the most well-known approaches is a weakly 
nonlinear expansion about a critical Reynolds number. However, for a non-parallel 
shear layer such a critical Reynolds number is not defined (e.g. see Smith 1979), while 
for a Stokes layer, linear Floquet theory has yet to yield a finite critical Reynolds 
number. Instead we assume that the Reynolds number, R, of the flow is large. In the 
case of a Stokes layer this means that the oscillation frequency, o, is much smaller 
than a typical O(wR)  frequency of the instability waves (while for a non-parallel 
shear layer it means that the viscous development length is much larger than the 
wavelength of an instability wave). Under such conditions, linear instability waves 
are quasi-steady and satisfy Rayleigh's equation (e.g. Tromans 1979). 

In order to fix ideas, consider figure 1 which is a graph of the neutral curves of 
a Stokes layer plotted as parametric functions of time. This is for a flow generated 
by a flat plate at y* = 0 with velocity (UOcoswt*,O,O), where (Y, y' ,z*) and t' are 
dimensional Cartesian coordinates and time respectively. The Reynolds number and 
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FIGURE 1. Sketch of the linear neutral curves of a Stokes layer plotted as parametric functions of 
time (from Cowley 1987); ti = (a2 + /l2)1 is the wavenumber and TO is a point on one of the neutral 
curves. Unstable modes can be found for those wavenumbers and at those times beneath the two 
neutral curves A and B; x is a mode crossing point. In the analysis we concentrate on times close 
to z = TO + ~ f . z l ,  where f is the magnitude of the disturbance and z1 is an order-one number. 

Stokes layer thickness are respectively 

and v is the kinematic viscosity. The streamwise and spanwise wavenumbers are 
non-dimensionalized by d*-’, and are denoted by a and +p. At any time an ‘infinite’ 
number of Rayleigh modes exist, but the most rapidly growing modes can for the 
most part be found at those times and for those wavenumbers that lie beneath 
the solid curve A in figure 1; see Cowley (1987) for further details including the 
significance of the mode crossing point marked by x. 

In this paper we will not be concerned with how Rayleigh modes are excited in the 
shear layer, i.e. the receptivity problem. Instead we adopt the conventional assumption 
that as a result of background disturbances Rayleigh modes are introduced into the 
flow. For instance, suppose that a pair of oblique modes are introduced into a Stokes 
layer at a time and with a wavenumber given by the left-hand branch of one of the 
curves A or B. As the Stokes layer’s mean profile slowly evolves this mode will begin 
to grow exponentially fast. A number of possibilities then arise: 

(a) First suppose that although small, the initial amplitude is such that nonlinear 
effects come in almost immediately near the left-hand branch of either curve A or 
B. For definiteness we assume that a disturbance of wavenumber ti = (a’ + P’)’ is 
introduced at the neutral time 7 = zo, and that it then has an amplitude €0. At a time 
z, where A7 = z - 7o << 1, a simple linear quasi-steady theory gives the growth rate as 
tFoRA7 and the wave amplitude, E ,  as 

E - eo exp ( ~ ~ I ~ R A T ~ )  , 
where &o = ko(@) is known (Cowley 1987). Inviscid arguments similar to those 
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of Goldstein & Choi (1989, henceforth referred to as GC) then show that nonlinear 
effects become important in an unsteady critical layer when the growth rate is O(efR) .  
Of course this scaling only applies if the flow becomes nonlinear while a critical layer 
exists, i.e. if AT << 1, or equivalently if 

X .  Wu. S.  S .  Lee and S.  J .  Cowley 

2 log €0' << &OR . 

In addition, the initial amplitude fa  must not be too large, otherwise both nonlinear 
effects and viscous effects must be included in the critical layer. In particular, if 

log€,' = O ( R f )  , 

so that nonlinear effects come into play when e = O(R-') and AT = O(R-)),  then the 
critical layer is unsteady and viscous. This is the scaling that will be studied here. 
Recently Hultgren (1992) has obtained excellent comparison between experiments 
and a theory based on unsteady non-equilibrium critical layers which is similar in 
spirit to that considered here. Hultgren's (1992) analysis suggests that theoretical 
results we obtain may have a wider range of validity than might first be thought in 
view of our specific choice of distinguished scaling. We delay until later a discussion 
of the 'very viscous' case that occurs when the flow becomes nonlinear for AT << R-f,  
i.e. when loge;' << Rf (see 004.2 and 4.4). 

(b) Next suppose that the initial amplitude of the disturbance is sufficiently small 
that the modes evolve linearly until they approach the right-hand branch of curve 
At, say at T = zo again. Then, as in (a) ,  nonlinear effects can be accounted for by 
an unsteady, viscous, critical-layer analysis if R-4 << (AT( << 1 (see 34.4 for a brief 
discussion of the very viscous case AT = O(R-i)). 

(c) The third possibility is that for disturbances of a given wavenumber, nonlinear 
effects become significant when the growth rate of the modes is O(R),  i.e. at a time 
far away from the neutral curves A and B. A fully nonlinear theory then seems 
necessary, and we do not consider this possibility further here. However, we note 
that asymptotic theories exist that modify the mean flow, so effectively changing the 
position of the neutral curves, e.g. the wave/vortex interaction theory of Hall & Smith 
(1991). The latter theory assumes that there is a weakly nonlinear, high-frequency, 
neutral wave (e.g. a Rayleigh neutral mode) whose evolution on a 'slow' timescale 
nonlinearly modifies the basic state by an order-one amount. However, in order for 
this interesting theory to be applicable, it is necessary for the flow to be able to evolve 
to the weakly nonlinear neutral wave in the first place. It turns out that our viscous 
generalization of GC's work is related to this question, and provides a link between 
two of the fashionable high-Reynolds-number stability theories (see 6 4.4). 

A main concern of this paper will thus be with the nonlinear effects associated 
with unsteady, viscous critical layers of three-dimensional disturbances. Specifically 
we shall seek a possible mechanism that leads to the bursting phenomenon observed 
in experiments on Stokes layers (e.g. see Merkli & Thomann 1975; Hino, Sawamoto 
& Takasu 1976; Hino et al. 1983). We shall assume that the disturbance consists 
of a pair oblique waves because the 'quadratic interaction' of such waves produces 
a vortex flow, and we note that a significant vortex structure has been observed by 
Hino et al. (1983). 

t The left-hand branch of such modes is on curve A for wavenumbers above point X of figure 
1, and on curve B otherwise (Cowley 1987). 



Three-dimensional nonlinear instability of shear layers 685 
1.2. Critical-layer theory 

There have been two main strands in the critical-layer theory of nonlinear flow 
stability (see the reviews by Stewartson 1981 and Maslowe 1986 for overviews of 
critical-layer theory and its applications). One strand has consisted of directly 
seeking nonlinear neutral-wave solutions, but without giving detailed consideration 
to whether the flow could evolve to these equilibrium states, e.g. Benney & Bergeron 
(1969), Smith & Bodonyi (1982a,b), Bodonyi, Smith & Gajjar (1983), Gajjar & Cole 
(1989) and Gajjar (1990). In the second strand, the evolution of a linear wave is 
followed into the nonlinear regime by introducing a slow time (temporal instability) 
or equivalently a ‘slow’ lengthscale (spatial instability), e.g. Churilov & Shukhman 
(1987a, 1988), Goldstein, Durbin & Leib (1987). We take the second approach here, 
and as is appropriate for Stokes layers, a temporal instability viewpoint is adopted. 
However, there are close analogies between the temporal instability of Stokes layers 
and the spatial instability of steady shear layers and (compressible) boundary layers 
(e.g. GC). This allows us both to draw on previous work and to extend our analysis 
in a straightforward manner to non-parallel shear layers (e.g. see Appendix A). 

The instability modes we consider have a wavelength comparable with the thickness 
of the shear layer. In the case of two-dimensional modes, the scalings and nature of 
the nonlinear analysis depend crucially on whether the neutral modes have a regular 
or (logarithmically) singular critical layer. In the former case, which is so on most 
of the left-hand branch of curve A, a strongly nonlinear critical-layer analysis is 
necessary as in the work of Churilov & Shukhman (1987a), Goldstein, et al. (1987), 
Goldstein & Leib (1988), Leib & Goldstein (1989), Goldstein & Hultgren (1988) and 
Hultgren (1992) (for other examples of this type of critical layer see the work of 
Goldstein & Wundrow 1990 and Shukhman 1989). However, on the rest of curve A, 
and all of curve B, there are two or more singular critical layers. Close to these curves 
it is found that for a given growth rate, nonlinear effects are felt at smaller disturbance 
amplitudes than if the critical layers had been regular; as a result a weakly nonlinear 
analysis is possible. However, the amplitude equation is not a Stuart-Watson-Landau 
equation unless viscous effects are large ; instead an integro-differential equation is 
recovered (Hickernell 1984; Churilov & Shukhman 1988; Shukhman 1991; Wu 1991; 
Wu & Cowley 1993). 

In the case of three-dimensional disturbances, Benney (1961) observed that a nearly 
neutral Rayleigh mode has a pole singularity in the streamwise velocity at the critical 
layer. At first sight this suggests that a different scaling is necessary in order to 
follow the nonlinear evolution of three-dimensional modes. Nevertheless, in the case 
of a single oblique mode in a (compressible) shear layer, a Squire transformation 
enables the weakly nonlinear problem to be reduced to one in which the scalings are 
essentially those for a two-dimensional singular critical layer (Goldstein & Leib 1989; 
Leib 1991). However this is not possible in the case of a pair of oblique modes. 

The nonlinear spatial evolution of a pair of oblique waves in a free shear layer 
has been studied by GC. They showed that because of the pole singularity, nonlinear 
effects must be included when the linear growth rate is O(efR). Our temporal analysis 
of the development of a pair of oblique waves closely follows the spatial analysis of 
GC, although we additionally allow the critical layer(s) to occur away from inflexion 
points. For two-dimensional disturbances such a generalization leads to a completely 
different critical-layer structure. However in the three-dimensional case it does not 
affect the critical-layer dynamics if the spanwise wavenumber p >> cf (Wu 1993~). 
Most importantly, in addition to this generalization we incorporate viscous effects 
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so that the critical layers involved are unsteady and viscous in nature. This enables 
us to make a link between the unsteady-critical-layer approach to instability and the 
wave/vortex interaction approach (Hall & Smith 1991). 

1.3. The underlying scaling 
We are thus interested in the evolution of a pair of high-frequency oblique modes 
when nonlinear effects become important near a neutral curve, i.e. either soon after 
the modes become unstable or just before they stabilize. As explained in detail by 
GC, Wu (1991) and Wu & Cowley (1993), it is appropriate to concentrate on times 
close to 

for some suitable zl  = 0(1), i.e. times at which the linear growth rate is O(e4R). 
Therefore we introduce the timescales 
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t = t o + e f z l ,  

t l  = f e f R ~ ,  (1.1) 
and 

in order to account for the ‘slow’ nonlinear growth/decay of the disturbance, and the 
‘fast’ carrier wave frequency of the disturbance, respectively. 

The basic flow U evolves on the very slow timescale z, and it turns out to be 
sufficient to express its profile at time t as a Taylor series about the neutral time T ~ :  

t = R t  (1.2) 

Hereafter all quantities associated with the basic flow will be evaluated at zo unless 
otherwise stated. 

In order to maintain maximum generality, we wish to retain viscous diffusion 
terms at leading order in the critical-layer equations. An elementary bFlance of the 
unsteady, u,, and viscous, R-’uY,,, terms in the critical layer of width € 3  (see (2.30)), 
shows that we require 

where the parameter 1 reflects the relative importance of viscous to nonlinear effects 
(cf. the Haberman parameter). Throughout @ 2  and 3, 2 will be assumed to be of 
order one. The highly viscous case corresponding to 2 being asymptotically large will 
be discussed in g4.2  and 4.4. 

The overall evolution of a three-dimensional disturbance is summarized in figure 2 
for the case when the flow goes nonlinear near the right-hand branch of curve A. As 
illustrated, the disturbance is initially linear and grows exponentially until its growth 
rate decreases to O(efR) when t1 = O(1). At this stage, nonlinear interactions inside 
the critical layers control the evolution. We wish to emphasize that there are four 
timescales illustrated in this figure: 

R-‘ = , (1.3) 

(a) the very slow timescale, z, over which the Stokes layer evolves; 
(b) the slow timescale, zl, over which the growth rate evolves; 
(c) the faster timescale, tl, over which the disturbance grows; 
(d )  the fast timescale, t ,  over which the disturbance oscillates. 

We note that although our analysis is based on being close to either the left- or right- 
hand branches of the neutral curve, it is straightforward to modify it to wavenumbers 
close to the apex of curve A in figure 1 (cf. Hickernell 1984). 

The paper is organized as follows. In $ 2  we construct asymptotic perturbation 
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I.-- Linear stage .-k Linear CL 4 Overlap domain -I- Nonlinear stage -A 
FIGURE 2. Evolution stages and critical-layer structures (for the case when nonlinearity becomes 
important near the right-hand branch of a neutral curve). The disturbance initially grows expo- 
nentially according to linear theory. As it approaches the neutral time 20, the growth rate becomes 
small, and linear critical layer(s) emerge. When the growth rate has decreased further to O(cfR), 
nonlinear interactions inside the critical layers control the evolution of the disturbance. The earlier 
linear, and the subsequent nonlinear, evolution stages match in the overlapping domain. 

expansions in the 'outer' region away from the critical layers. The limiting forms of 
these solutions near the critical layers are then determined; as usual these contain 
unknown 'jumps' across the critical layers. A solvability condition is also deduced 
for an inhomogeneous Rayleigh equation. In $ 3 ,  we analyse the unsteady, viscous 
and weakly nonlinear flow within the critical layers. By matching the inner and 
outer solutions the unknown jumps are evaluated. Then by combining the solvability 
condition with these jumps, we derive the amplitude equation which is a main 
result of this paper. The amplitude equation is studied in $4, both analytically and 
numerically. In particular, a finite-time singularity structure is identified as in GC, and 
confirmed by numerical solution. In addition, exponentially decaying solutions are 
found under certain conditions. The viscous limit is discussed and a link is established 
with the wave/vortex interaction work of Hall & Smith (1991). Finally, in $5, we 
summarize our main results, and discuss the implications of this study. In Appendix 
A, as a demonstration of the general application of the present study, we deduce the 
amplitude equation for free shear layers by combining the present results with those 
of GC. 

2 Outer expansion 
We take the flow to be described by Cartesian coordinates (x* ,y* ,z*)  = d*(x,y ,z) ,  

where X* is parallel to the direction of oscillation of the plate, y' is normal to the plate 
and Z* is the spanwise direction. We non-dimensionalize time with m-', i.e. z = at', 
and write the velocity as Uo(U, V ,  W ) .  The analysis applies to any inviscidly unstable 
almost parallel two-dimensional velocity profile ( U ,  R-' P, 0). However, for purposes 
of illustration we will substitute at appropriate points the Stokes-layer solution for 
flow over an oscillating plate: 

(V ,  R-' V ,  0) = (cos(z - y)e-Y, 0, 0) . 
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We denote the perturbed flow by 
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( U , V , W )  = (U+u,R- 'V+u,w) I 

2.1. The solution away from the critical levels 
Outside the critical layers, the unsteady flow is basically linear and inviscid. It is 
governed, to the order of approximation required in this study, e.g. terms involving 
R-' V can be neglected, by the inviscid equations 

au a v  aw -+-+-=0, ax ay a2 

The elimination of pressure yields : 

= o ,  ( 2 R - ' - + U & ) ( g - - $ ) - y ~  a a 6  aw 
a7 

and 
a0 

ax V2v - Uyy-  = 0 

On introducing the multiple timescales referred to above, the time derivative needs to 
be transformed according to 

The velocity (u, u, w) and the pressure p of the disturbance are expanded as follows: 

U=EUI +&+.. .  , 

w = ew1 +e!w* + ... , 
p=ep1 +&+E$& . 

4 
v = e u l + E J v 2 +  ... , 

The 'early time' linear solution is just a normal mode, so we seek solutions of the 
form 

= A(tl)6l(y) cos PzE + C.C. , (2.11) 
where 

A 

E = exp(iax - is@)) , (2.12) 
A(tl) and &t) are the amplitude and phase respectively of the disturbance, and a and 

are the imposed streamwise and spanwise wavenumbers. In the case of a steady 
non-parallel shear layer the form of the solution has to be changed slightly so that 
the frequency and spanwise wavenumber are imposed (e.g. see GC and Appendix A). 
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As is standard in a WKBJLG analysis we write 

d6 I I  
- = iac(z0) + p€.zS2,(zo) +. . . , 
dt (2.13) 

where c is the local wavespeed, and GI represents a higher order correction to the local 
frequency which arises from a viscous sublayer adjacent to the wall (Cowley 1987). 
For simplicity we have assumed that the two oblique waves are of equal amplitude. In 
principle it is straightforward to extend the analysis to unequal amplitudes ; however 
the asymmetry in the amplitudes complicates the algebra, especially in the viscous 
case. Note that as in Wu & Cowley (1993), the dependence on the slow timescales z 
and TI is parametric and will not be written out explicitly. The function @, satisfies 
Rayleigh's equation 

(D - c)(D2 - E2)iSi - U,bI = 0 , (2.14) 
where 

E = (a2 +fly . 
The boundary conditions are that El = 0 on y = 0, and 5, + 0 as y .--, 00. 

El has the following asymptotic behaviour : 
We let y = y - yi,  where y! is the jth critical level at which = c. Then as y + LO, 

(2.15) iji - a f + a  + $ [ + b  + p j + a  log IVII > 

where 

C)@ = q + ipjy2 + ... , and C),, = 1 + qjq2 + ... . 
The function v2 takes the form: 

v2 = @z(y, t l )E cos pz + ip) cos 2pz + C.C. + . . . , (2.16) 

where a relatively large longitudinal-vortex component, Uy) cos 2pz, has had to be 
included in order to match to the inner solution. Further details concerning the 
origin of this term are given in $3,  although a brief explanation can be given as 
follows. Near a critical level ui and w1 are proportional to q- ' ;  see (2.28) and (2.29). 
Hence within the critical layers the leading-order velocity perturbations are of size 
(u,u,w) - ( E ; , C , C : ) .  As a result of quadratic interactions within the z-momentum 
equation, an x-independent spanwise flow of O(E) is forced in the critical layers (e.g. 
this comes from balancing the € 4  wt, and uw, terms). From the continuity equation 
this forces an O ( E ~ )  x-independent velocity normal to the wall. A detailed analysis of 
this term in $ 3  shows that it tends to a constant at the 'edge' of the critical layers; 
hence the x-independent term must be included in (2.16). Indeed there is a jump in 
the value of this term across the critical layers. 

The function b2 is the deviation of the eigenfunction from its neutral state, and 
satisfies the inhomogeneous Rayleigh equation 

with the usual boundary conditions of i j2  = 0 on y = 0 and D~ + 0 as y + +co. The 
asymptotic behaviour of b2 as y + yi  is 

82 - -bfr j  log Iy I + (uFrj + bfsj)q log Iql + . . . 
+cfba  + df[bb + pj4alog I ~ I I  , (2.18) 
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where 
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U Y Y  

* j = U , , ,  

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Recall that all the basic-flow quantities are evaluated at time TO and at the critical 
level y!. The jumps (u; - a;), etc., will be determined by analysing the critical layers 
in $3 .  

The continuity equation suggests that we write 

wI = AWIE sin f i z  + C.C. , 
where *l satisfies the equation 

This has the solution 

where 
sine = /3/@ . 

The velocity u1 has the form 

u1 = AiilE cos /?z + iiy’(y, t ,)  cos 2pz 

where Eil is obtained from the continuity equation as 

Y (2.23) 

+ C.C. , (2.24) 

(2.25) 

In order for u1 to be able to match with the inner solution (see $3) ,  a spanwise- 
dependent mean flow, ii‘p.”(y, t l )  cos 2fi2, has to be included at leading order (see 
also GC). As will be shown later, this mean flow is driven by a streamwise slip 
velocity across the critical layer, which itself is generated by a nonlinear interaction 
inside the critical layer. Although the mean flow is large in the sense that it has the 
same magnitude as the fundamental waves, it has no back effect on the critical-layer 
dynamics. Its de endence on tl can be viewed as forcing the longitudinal vortex represented by ijf’ P ) and Wy). 

Similarly, we write the leading-order pressure perturbation as 

P I  = A(tl)plE cos PZ + C.C. , 
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where 
p1 = ig-' cos 6[Dyal - (U - ~ ) i j ~ , ~ ]  

As y 3 yf, the asymptotic solutions of PI, Gil ,  wl become 

PI - i&-' oy cos Ob? + . . . , 
iil - -(irz)-' sin' e b f p  + . . , , 
wl - ti-' sin ~ b ? q - *  + . . . . 

(2.26) 

(2.27) 
(2.28) 
(2.29) 

Note that the singularity in ill is a simple pole rather than the logarithmic branch 
point characteristic of a two-dimensional (singular) disturbance. As GC observed, it 
is this difference that results in the faster nonlinear evolutionary timescale compared 
with the corresponding two-dimensional case. 

r 
We now introduce an inner variable: 

(2.30) Y = - .  
€ 4  

The outer expansions written in terms of this inner variable are then: 

u - ebfAE cos PZ + 6; log ~f (-bfrj + bfpjAY)E cos /?z 

+ ~4 [(-bfrj log 1 Y I + df) + A(afY + bFpjY log 1 Y l ) ]E cos pz 

+el loge)[(afrj + b?sj + d F p j ) Y  + -ApjbfY2]Ecosbz 

+ c;  [c? Y + (afrj + bfsj + dFpj)  Y log 1 Y IE cos /?z + C.C. + . . . , 
1 
2 

(2.31) 
(2.32) 
(2.33) 
(2.34) 

u - ei (-irz)-' sin' OAbT Y- 'E  cos oz + C.C. + . . . , 
w - E4ij i - l  sin ob;AY-'E cos pz + C.C. + . . . , 
p - r i&-' oy cos BAbfE cos p z  + C.C. + . . . . 

2.2. Solvability condition 
By multiplying both sides of (2.17) by V l ,  and integrating from 0 to +a with respect 
to y, we obtain 

where J1 and 5 2  are formally defined by the following integrals respectively: 

(2.36) 

(2.37) 

Attention must be paid to the fact that both these integrals and the left-hand side 
of (2.35) are singular. On making use of the asymptotic solutions (2.15) and (2.18), 
and on analysing the singular behaviour of the integrals in the interval - g, yf + 21 
where 2 is a small number, we find that the singular parts on the left-hand side of 
(2.35) cancel those on the right-hand side, leaving the finite part to give the solvability 
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condition for (2.17), namely 
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-pj(bfdT - bTdT) - ( ~ f d j '  - a i d r ) }  , (2.38) 

where the sum is over all critical layers. An examination of the singular terms in 
(2.35) shows that the cancellations occur in such a manner that J1 and J 2  can be 
interpreted as Hadamard finite parts (Hickernell 1984). 

After the jumps (a; - a;), etc., are determined in the next section, the amplitude 
equation can be derived from (2.38). The nonlinearity is introduced into the amplitude 
equation through the jumps; thus for the purpose of deriving the amplitude equation, 
we only need to consider those parts of the inner solutions contributing to the jumps. 
This consideration simplifies the algebra to a certain extent. 

3 Inner expansion 

layer take the following form : 
Equations (2.3 1)-(2.34) suggest that the inner expansions within the j th critical 

u = € h J ,  + € k 2 + E k 3 + . . .  , 
u = €4 v, + €! v, + €: v, + . . . , 

w = € f W , + € 3 W * + € b v 3 +  ... , 
p = € : P l + € 4 P , + d P 3 + . . .  , 

where O(e"1ogef) terms have not been explicitly included. This is because as far 
as deriving the amplitude equation is concerned, they are passive in the sense that 
they match onto the outer solutions automatically whenever the solutions at O(E") 
match, i.e. matching at O(en log ci) does not yield any additional jump conditions. 
Of course, these terms must be included if a quantitative comparison between theory 
and experiment is to be made. 

The function Vl satisfies the equation 

a 2  v, 
a y2 

LO - = o ,  
where 

a 8 a 2  
Lo = - + (U,Y + U J , ) -  -1- 

at, ax a Y 2  

(3.5) 

The solution which matches the outer expansion is 

V1 = A(t , )E  cos P Z  + C.C. , (3.7) 
where 2 = bjA, and bf  = b; = bj ,  i.e. the jump (bf - by) is zero. 

The expansion of the y-momentum equation gives 

ap1 - = o ,  
ay  

and so the appropriate solution is 

PI = i&-' uy cos t laE cos j?z + C.C. 
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From the z-momentum equation we have that 

(3.10) 

We let W ,  = f i I E  sin pz + c.c., then @ satisfies 

Q‘) I@, = in,, sin e cos eA , (3.11) 

where 

(3.12) 
a a 2  

at, a Y 2  * 

f,!) = - + nia(U,Y + U7,zl) - ,I-- 
Equation (3.11) can be solved using Fourier transforms to yield the solution 

JV, = i U,  sin e cos e ~ J o )  , (3.13) 

where 
+m 

d t  9 
I@:) = 1 t n a ( t  e )  - - S ~ P - ~ Q C  

1- e 

and 

Similarly, the leading-order streamwise velocity 81 can be written as 
a = a(D,Y + UJ1) , s1 = +la 2 - 2  u, . 

U1 = 61 E cos p z  + C.C. 

It follows from the continuity equation that 

fiI = -U,, sin2 ~ @ f )  . 

At O(E$) ,  V2 satisfies 

a as,, 
LOV2,YY = L V 1 + -  aY [-+!$I ax , 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

where 

and S , , ,  S,, are Reynolds stresses defined by 

au,w, av,w, aw: 
a y  a Z  

+-+-. s,, = ~ 

ax 

(3.19) 

(3.20) 

SI1 and S,, can be rewritten as 

s11 = s,, (0.0) + $2’ cos 2pz + s,(y E 2 + S r ’ E 2  cos 2 j z  + C.C. , 
s~~ = s:?) sin 2pz + s::,~’E* sin 2pz + C.C. 

(3.21) 
(3.22) 

After some calculation, we find that 

$y’ = l1&2 2 Y  sin2 62 @;I) , (3.23) 

s,(?) = !.iaU; sin2 02 @J’) , (3.24) 

(3.25) = ; i d :  sin2 o[A@J” + 2 sin2 e@J0’ @?)I , 
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From inspection of (3.21), (3.22) and the right-hand side of (3.17), we conclude that 
V2 has a solution of the form 

v2 = @l)E cospz + @%os2pz + @;("O)E2 + C.C. (3.29) 

The fundamental component @" is driven only by the linear forcing term, i.e. 
LIVl = ianyya. This is exactly the same as in the two-dimensional case (e.g. see Wu 
& Cowley 1993). By analogy, we obtain the jump conditions 

a; - a; = zipjbjsgn(Uy) , 
d +  I J  - d:  = -nirjbisgn(Uy) . 

(3.30) 
(3.31) 

Substituting (3.23)-(3.28) into (3.17), we find that the functions ?ioS2) and ?i2,') 
satisfy 

(3.32) 

f,?) p.t$ = is3 sin2 6 [a@?) + 4 sin2 6 @:) @j19 , 

s = L a y .  

(3.33) 
respectively, where we have put 

Inserting (3.14) into (3.32) and (3.33), and integrating these equations, we find the 
solutions 

(3.34) 

(3.35) 

Q?$ = -is3 sin26 g+I i rn 5Zy)(<, q)k(tl -q)a(tl -q-5)e-incd<dq , 
+rn +rn 

P(2.0) 2 , Y Y  - - is3 sin26 1 1 Zy)(<, q)&t, -q)a( t ,  -q-<)e-in(e+2q)d<dq 7 

where we have defined 

(3.36) 

p(<, q) = e-sr(r3+35*4) 

~ ( 1 ) ( < ,  q) = e-~,((r3+3e2q+6es2+4q3) 

In simplifying @::; into the present compact form, we have dropped a 
imaginary part; from (3.29) this does not alter the physical velocity. A 
procedure will be followed on solving for F%'(o,2) later on. 

It follows from (3.34) that as Y -, +a 
( f ? . '  + c.c.) - +8s s i 1 1 ~ 6 z ~ + ~ ~ '  e-2sli3 ,act, - q)12d[dq 

+{order-one 'no-jump' terms} + o(1) . 

(3.38) 
(3.39) 

purely 
s i m i 1 a r 
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We conclude that a longitudinal vortex c o p  onent must be included in the O(e!) 
outer expansion of Y so that a match with Vi *2) can be achieved. l? 

The function U2 satisfies 

(3.40) 
a Wl aw, a - aw, 

LOU2,Y = -OyyV1 + FI(Y)-- - W Y ) -  - - & I  + u y -  aZ axay aY az 
where 

and 

The solution has the form 

F , ( Y )  = UyyY + UYr21 , 

F2(Y) = py,r2+ U y , q Y  + p,J;. 

(3.41) 

(3.42) 

U, = @'E cos PZ + fiy' + fip." cos 2pz + f i Y ) E 2  + O Y ) E 2  cos 2Pz + C.C. (3.43) 

In order to derive the amplitude equation, we need only the mean-flow distortions 
fip) and fiy). These satisfy the following equations respectively: 

(3.44) 

(3.45) 

where S1(?) is defined by (3.24). The solutions are 

where we have put 

Integrating o$? once with respect to Y ,  we find that as Y + +oo 

+{order-one 'no-jump' terms) + o(1) . (3.49) 

This is in fact a streamwise slip velocity generated by nonlinear interactions inside the 
critical layers. The outer expansion for u must match to this; hence the leading-order 
outer expansion for u, (2.24), must contain a component representing a spanwise- 
dependent mean flow. 

The spanwise velocity W2 satisfies the following equation : 

(3.50) 

where F2 is defined by (3.42). The solution W2 has the form 

W, = I + ~ ) E  sin ~z + I@?) sin 2pz + F ? ~ ) E ~  sin 2pz + C.C. (3.51) 

Since at next order we are only interested in the interaction that generates the 
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fundamental, I%;’) does not need to be calculated. Moreover, we find that as far as 
deriving the amplitude equation is concerned, it is sufficient to solve just for the mean 
component @?). It follows from the continuity equation that 
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(3.52) 

and hence from (3.52) and (3.35) that as Y + kc0 

An important point to note is that all the spanwise velocity components generated 
by the nonlinear interactions are bounded as Y + +a. This is in contrast to the 
case of a purely viscous critical layer where unbounded growth of these components 
can occur (e.g. see Hall & Smith 1991). This difference arises because the inclusion 
of unsteadiness in our critical layers means that as Y + kco the balance is between 
the unsteady inertial term and the nonlinear forcing terms. In a steady viscous 
critical layer the balance is between the viscpus diffusion term and the nplinear 
forcing terms. For instance, in the case of W(o,2) the balance is between Wyo;) (in 
our notation) and a nonlinear forcing which decays like Y-2 as Y -+ kco. Therefore 
I%(o,2) grows like ‘ f Y  + log Y’. In a wave/vortex interaction, this unbounded growth 
is one of the reasons why small-amplitude three-dimensional disturbances are able to 
generate order-one mean-flow distortions (Hall & Smith 1991). 

The unbounded growth of a mean-flow distortion away from a visccus critical layer 
has been noted in other stability problems, e.g. for two-dimensional disturbances in 
stratified shear flows (Churilov & Shukhman 1987b; see also Goldstein & Hultgren 
1988). However, often the evolution of the disturbance is sufficiently rapid that a 
linear diffusion layer is established between the critical layer and the outer region 
to eliminate this growth (see also Brown & Stewartson 1978; Haynes & Cowley 
1986, and 04.4). In the nonlinear Rayleigh-wave/vortex interaction model of Hall & 
Smith (1991), the diffusion layer merges with the outer region because the amplitude 
evolution is sufficiently slow - in our notation Hall & Smith (1991) effectively have 
two timescales, namely the time t to describe the rapid oscillation of the disturbance, 
and the time z to describe both the evolution of the basic flow and the growth of 
the disturbance. The relationship of the present work to the wave/vortex interaction 
approach will be examined in 84.4. 

We now proceed to derive the amplitude equation. For this purpose, it is sufficient 
to seek the solution for V3 only. This term satisfies 

where 

(3.54) 

(3.55) 
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the Reynolds stresses S12 and S32 are defined by 

(3.56) 
a a a 

a a a 
SlZ = &(2UlU2) + Z(U1VZ + UZVl) + Z ( U , W 2  + UZWl) , 

s32 = ,(ulWZ + u2w1) + E(wlv2 + w2vl) f Z(2WIw2) 9 (3.57) 

and for brevity only those terms that contribute to the jumps across the critical layers 
are explicitly included. 

At this order it is only necessary to find the fundamental component, i.e. 

v, = P3E cos p z  + C.C. + . . . . 
Similarly we write 

a a 
ax aZ -S12 + -5'32 = M E  cos PZ + C.C. + . . . , 

with the non-fundamental components being omitted. 
We note that the relevant part of the linear forcing term, i.e. (LlV2 + L2Vl), is the 

same as F(')(Y, tl)E in Wu & Cowley (1993). Thus the solution forced by it, denoted 
here by @)E, has the same asymptotic behaviour: 

@,'$ - ( u T ~ ,  + 2qjbj + 2p;bj) Y + (aTrj + pjdf + Sjbj) log I Y I 
+(kinisng(Uy)(afrj + p j d ;  + sjbj) + . . .} . (3.58) 

Also, in order to aid the calculation of the solutions and their asymptotic behaviour, 
it proves convenient to write the nonlinear forcing term &I as a sum of the four terms, 
namely 

where 
M=M1 +Mz+M3+Mo, 

(3.59) 
(3.60) 
(3.61) 

+ L , a * f i f 2 , 2 )  2 + L p a * f i p  2 + iafil,Ypyl - 2a2fi,fiy) (3.62) 

fil = iaAfii,(y) + ~ ~ E A u , , ;  A A *(02) + $pA$$?) , 

j@z = iafil,y P ; ( O J )  - 2a2 fjl f i p 2 )  9 

Mo = i,aqy + ;iCIafip + ; p a f i g )  + i,a* fi?' 
M3 = 2iair; Pp) , 

We now let Pt' denote the solution driven by fij ( j  = 0,1,2,3). Then 

P 3 , Y Y  = Pgy + + Pgy + P g y  + P;;iY , (3.63) 

(3.64) 
and J!,!) is defined by (3.12). In addition we denote the Fourier transform of p:iy by 
Tj(k): 

+02 A 

Tj(k) = 1, V3,yve-ikYdY . 

To obtain the jump we need to evaluate {@$(+.o) - ?:$(--a)}, or equivalently 

rj(o) = @(+~o)  - @;(-a) . (3.65) 

A calculation shows that Pr) makes no contribution to the jump. 

23 FLM 253 
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The forcing MI represents the Reynolds stress generated by the interaction between 
the vertical velocity of the fundamental wave and the induced spanwise flow. Using 
(3.65), and solving (3.64) with j = 1, we find that 
PUf ( 

3,Y +a) - Q , Y ( - 4  

where we have put 

@)(<, q )  = I?(’)((, q)  2t3  + t 2 q  + 2 sin28 [t2 + 25(q - <)]e-2s1c3-3s1tc2d<} , 
(3.67) 

@ O ) ( t ,  ‘I) = e-s1(243+352~) (3.68) 
The forcing M2 represents the interaction between the streamwise velocity of the 

fundamental wave and the induced spanwise flow. In order to overcome a technical 
difficulty in evaluating the asymptotic form of 

{ lV 
and 

we write 

(3.69) @iY = Q2(Y,t l )  - i ~ ~ a ; l f i ~ , ~ ~ U ~  *. *(0,2) . 

Substituting this and (3.60) into (3.64), we find that Q2(Y, t l )  satisfies 

Lf’Q2 = R,(Y,  t l )  , 

R2 = M L y  + iaU;lQ‘)(OI,yyO~)) . 

L, u ~ , ~  = -iaUyC, , 

(3.70) 
where 

Since 

we obtain, by differentiating with respect to Y ,  that 
(3.71) 

L ~ ) u ~ , ~ ~  = - 2 i ~ t U ~ f i ~ , ~  . (3.72) 

A (1) A 

A + .  

From use of (3.72) and the complex conjugate of (3.45), we find that 

R2 = iaOl,yP~:0.2)-2Ct2ir10~~)-2i1Cta~1 ir,,,,, fii,($2)-ia~;1 01,yy~;1(0.2) . 
Then after solving for Q 2 (  Y, t l )  from (3.70) using Fourier transforms, we obtain 

(3.73) 

9;;; (fm) - 9;;; (-00) 

+m +a,_ 

= 2s4j0 sin4% .I K,’2)(t, q)a( t l -<)~( t l  -v-t)a*(t, -2t-q)drdq , (3.74) 

where we have put 

[5(2q+35)-5(5+2q+25)]e-3s1“c2d< 

+ (5, q )  1‘ [(q + 1;) (q  + 31;) - (5  + q )  (5 + q +25)] e-3S1(5+V)(2s+i)r d1; 
0 

(3.75) 
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(3.76) 

The forcing f i 3  is the Reynolds stress generated by the interaction between the 
streamwise velocity of the three-dimensional fundamental and the 'two-dimensional 
harmonic' generated by the interaction of the fundamentals. On writing 

= Q3(Y,tl)+D;O;,,,P-$O) , (3.77) 
and substituting this and (3.60) into (3.64), it can be shown that Q3 satisfies 

f$'Q3 = iV3(Y,tl) , (3.78) 
where 

m 3  = a3,Y-u; - lA(l) J?& ( 6' l , y y p $ ? )  . 

it) P(2,O) = 2ia uy py7 + 2ias,'p 
Observing that 

and using the complex conjugate of equation (3.72), we find that 
2, y 9 

f i 3  = -2iaD; o* 1,YY ~ ~ ( 2 , ' )  11 +2nD: 0' 1 ,YYY p(2m 2,YY 3 (3.79) 

where Sj?) is defined by (3.25). After solving for Q3 from (3.78), it can be shown that 

where 

(3.81) 
and 

+I (41 3 i 6 t  12+91152i6stlri6q2C) no(t, ?, 0 = e 
By matching f i 3 , y  with the outer expansion we find that 

(3.82) 

c y c ;  = ~ 3 , , , , ~ ) - ~ 3 , y ( - O o )  . (3.83) 

Combining (3.64), (3.58), (3.66), (3.74), (3.80), together with (3.67), (3.75) and (3.81), 
we conclude that 

C T - C ~  = nisgn(u,)(apj +pjd;+sjbj) 

(3.84) 

23-2 



700 X .  Wu, S. S .  Lee and S.  J .  Cowley 

where 

(3.85) 

Here the suffix j refers to the j th critical layer, I?('), @I) and no are defined by (3.68), 
(3.76) and (3.82) respectively, and the dependence on 3, is through s1 (see (3.15)). 
Although the kernel K j ( < ,  q [ A) is algebraically complicated, nevertheless it simplifies 
to the following form when 1 = 0: 

~ ( 5 ,  q )  = (2c3+t2+2 sin28(2t3-tq2)-4 sin48(t2q+5q2) . (3.86) 

This is just the kernel obtained for the inviscid case (GC; Wu 1991). 
We note that both (u$--aJ and (dj'-d;) correspond to the classical kn phase shift 

in the outer expansion, while (c7-cJ is modified by nonlinearity. It is through this 
modification that nonlinear effects control the evolution of the disturbance. 

3.1. The amplitude evolution equation 
By inserting the jumps (3.30), (3.31) and (3.84) into (2.38), we obtain the amplitude 
equation 

(3.87) 

where the sum is over all critical layers; in the case of the Stokes layer there are two 
for most of the right-hand branch of curve A of figure 1. The kernel Kj(<,qJA) is 
defined by (3.85), while 

(3.88) 



Three-dimensional nonlinear instability of shear layers 70 1 

The constants f and f o  are the same as in the two-dimensional case (Wu & Cowley 
1993), namely 

+ b j n a  "'1 +Jl  } , (3.90) 
cJy UYYY - 

"Yt"Yl2 u,' 

(3.91) 

while J1 and J2 are defined by (2.36) and (2.37) respectively. In Appendix A we 
indicate the minor modifications that are necessary to the above amplitude equation 
in order to consider the viscous spatial evolution of disturbances in free shear layers 
(cf. GC). 

In the case of the Stokes layer the coefficients gj are evaluated. For instance, in 
figures 3(a) and 3(b) they have been plotted against the wavenumber ti = (ct2+p2)4 for 
the right-hand branch of curve A. The plot of the scaled coefficient (go sec 0) against 
B is the same as shown in figure 3 of Wu & Cowley (1993) (provided that ct there is 
replaced by a). For our purposes here it is sufficient to recall that the real part of go 
is always negative. 

In the inviscid limit, 1 = 0, the amplitude equation becomes 

where the kernel K ( < ,  q )  is defined by (3.86), 

(3.93) 
j 

and the sum is over all critical layers. Note that although we have assumed that 
Uy,,(yc) # 0, the nonlinear kernel K ( < , q )  is exactly the same as that of GC. This 
is because nonlinear interactions inside the critical layers are only associated with 
the pole singularity in u and w, compared with which the logarithmic branch-point 
singularity associated with U y y ( y c )  # 0 is much weaker. 

In the spirit of Stewartson & Stuart (1972), Churilov & Shukhman (1988), GC and 
others, we require solutions to (3.87) to match with the exponentially growing linear 
stage as t l  ---f -a, i.e. 

A -+ &egorlfl as tl +-co . (3.94) 

Following GC, the parameters A. and z1 can be scaled out by introducing the rescaled 
variables 

(3.95) 

(3.97) 
(3.96) 

where gol and goi are the real and imaginary parts of go respectively, and To and To 
are chosen so that 

-to+iTo = l o g [ ~ o ~ g ~ ~ / ( g ~ , z l ) ~ ]  . (3.98) 
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FIGURE 3. The scaled coefficients in the amplitude equation (3.87), where 
Gj = g j / [ a 4  sin2 e ] ( j  = 1,2), and G = GI + G2. (a) The real parts. (b)  The imaginary parts. 

The evolution equation and the asymptotic behaviour then become 

- A -+ e‘ as t+-co, 
(3.99) 

(3.100) 

where vj = g j / l g l ,  and we have written 3 in the kernel as A. 
If there is only one critical layer, then )vl 1 = Iv 1 = 1. Thus in this case the amplitude 

equation depends only on 2, 8 and argv. In this sense, the rescaling (3.95)-(3.97) 
achieves the same purpose as Shukhman’s (1991) introduction of a ‘logarithmic time’. 
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4 Study of the amplitude equation 
4.1. Finite-time singularity structure 

A singularity structure for the amplitude equation (3.92), i.e. the inviscid limit of 
(3.87), was proposed by GC in their study of the spatial evolution of disturbances in 
a free shear layer. They showed numerically that solutions developed a singularity 
at a finite distance downstream, or in terms of our temporal evolution problem, the 
solutions blew up within aJinite time. The singularity proposed was 

where c and a. are real and complex constants respectively. Although this finite-time 
singularity was identified for the inviscid case, substitution of (4.1) into (3.99) shows 
that it is unaltered at leading order by viscous effects. We obtain 

where 

and la01 and c can be solved from (4.2). The singularity time t ,  can be determined 
numerically in the same way as described in Wu & Cowley (1993). 

4.2. Viscous limit 
Possibly the most surprising result of this paper is that the amplitude equation (3.87), 
or equivalently (3.99), does not admit an equilibrium solution. This is a significant 
difference from the two-dimensional viscous case (e.g. Goldstein & Leib 1989; Wu & 
Cowley 1993). The reason for this is that the integral of the kernel 

J+l+m Kj( t ,  r12)dtdq 

does not exist. 
In order to shed light on this observation, we now turn to examining the amplitude 

equation under the very viscous limit 1 --+ +a. This corresponds to the situation 
where nonlinear effects become impor;ant at times relatively close to a linear neutral 
curve; i.e. times such that  AT/ << R-7 in terms of the notation of $1. The growth 
rate of the instability waves is then relatively small, and the effects of viscosity are 
relatively large. In Appendix B it is shown that in this limit, the amplitude equation 
(3.87) can be reduced to 

where 7, is defined in (B7). The complex constant g is 

where the sum is again over all critical layers. The parameter A can be scaled from 
the leading-order equation by the transformation 

A = A i A ,  and z1 = il-f?, , (4.6) 
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to obtain 
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We note that in this limit the critical layers are of width O(Aj&), i.e. O(R-i ) ,  and 
are thus viscous at leading order. However, sandwiching each critical layer there are 
thicker diffusion layers of width O(A$d),  i.e. O(AfR-f), where unsteadiness effects 
are still important at leading order (cf. Brown & Stewartson 1978). From (2.8), (2.11) 
and (4.6) we observe that the mode amplitude at which nonlinear effects come into 
play, i.e. cA4 = 1-3 R-I, decreases as 1 increases. 

Since the completion of this study, Smith & Blennerhassett (1992) have published a 
derivation of essentially the same equation as (4.7) in the context of the lower-branch 
of the Tollmien-Schlichting instability of channel flow. Again the presence of diffusion 
layers is a feature of the analysis. However, rather than matching their solutions to 
an exponentially growing linear mode as 2, + -00, they assume that a disturbance 
of suitable form is instantaneously introduced at 2, = 0. Recently Mankbadi, Wu & 
Lee (1993) and Wu (1993b) have shown that an extension of equation (4.7) arises in 
analyses of upper-branch boundary-layer stability. The integral term arises due to 
the presence of diffusion layers of the same type as here; indeed such a term appears 
to be a characteristic of flows where a diffusion layer is needed to accommodate the 
interaction between the three-dimensional waves. 

As already noted, a remarkable feature of (4.7) is that the nonlinear term is non- 
local so that the amplitude equation is not of Stuart-Watson-Landau type.? In fact 
the nonlinear effect comes only from the second terms on the right-hand sides of 
(3.59) and (3.60) which represent the interaction between the fundamental and the 
induced mean-flow distortion - the higher harmonics play no role at leading order. 
This is in contrast to the case when 1 = 0(1), where both the mean-flow distortion 
and the higher harmonics contribute. Note also that when 8 = in, the coefficient 
g is zero so that the nonlinear term vanishes (see (4.5)). The same behaviour also 
occurs in the inviscid case (GC). However, when 0 < R < co, Kj(g,qlA) is non-zero 
even when 8 = $7~. 

Although a numerical investigation of (3.99) seems necessary, we note that (4.7) 
can be solved analytically. First we scale out various constants by a transformation 
similar to (3.95)-(3.96) : 

where Tlo and are chosen so that 

and gr is the real part of g, i.e. 

(4.1 1) 

f The authors are grateful to Professor S.N. Brown for discussions without which the authors 
would not have realized this point. 
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The evolution equation (4.7), and the asymptotic behaviour, then become 

(4.12) 

and 
B -+ exp(il) as i, +-XI . (4.13) 

By multiplying (4.12) by B', and then taking the complex conjugate, it is straightfor- 
ward to show that 

(4.14) 

On solving a differentiated version of (4.14) subject to the initial condition (4.13) we 
obtain 

(4.15) 

From (4.15) it is clear that the sign of gr plays an important role in determining 
the terminal behaviour of solutions to (4.7). In particular, the solution develops a 
finite-time singularity when gr  > 0, but decays exponentially at large times when 
Er < 0; when gr = 0 the solution for IA( grows exponentially. Since (4.7) is a limiting 
form of (3.87), this suggests that when gr > 0, solutions to (3.87) or (3.99) will develop 
a finite-time singularity no matter how large 1 is. However, when gr c 0 it seems 
likely that solutions will terminate in a finite-time singularity if L is not too large, 
but will decay exponentially once 1 exceeds a critical value. Our numerical results 
demonstrate that this is indeed the case. 

4.3. Numerical study of the amplitude equation 
We have integrated the rescaled amplitude equation (3.99) using a finite-difference 
method. Two independent schemes have been used as a check: a Milne's (predictor- 
corrector) method and an Adams-Moulton (implicit) method. Both schemes have 
sixth-order accuracy. The kernel &(<, q (A) is evaluated numerically using Simpson's 
rule. 

We assume that A can be approximated by the linear solution e' when i 5 -'To, 
where To is a 'big' positive number; a suitable choice is determined by trial and error. 
The integral over the infinite domain D = [O,+co) x [O,+oo) is approximated by that 
over a large but finite domain Do = [0, Xo]  x [0, Yo]. For the viscous case, the tail over 
the domain DI = (D - Do) is neglected. This is justifiable because the factor 

decays exponentially as < and/or q tend to +a. Different values of Xo and Yo 
were tried in the program before deciding on suitably large values; we find that it is 
sufficient to take X o  = Yo = 7 + To. For the inviscid case, we approximate the tail over 
D1 analytically using the linear solution. However, we find that dropping this tail has 
little effect on our results. 

The inviscid version of (3.99) has been studied by GC. Their numerical results 
confirm the singularity structure (4.1). Here we integrate the inviscid amplitude 
equation using the coefficients calculated for the Stokes layer. Figure 4 shows results 
for the wavenumber E? = 1.2 on the right-hand branch of curve A. Four propagation 
angles B were investigated: 0 = 15", 30", 60" and 75". For 8 = 15" and 30" the 
amplitudes exhibit an oscillatory behaviour, indicating a periodic energy exchange 
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RGURE 4. LnlAl us. the scaled time t for % = 1.2 and 1 = 0 (inviscid limit): (a) I9 = 15"; (b)  6 = 30"; 
(c) 0 = 60", ( d )  I9 = 75". Solid lines: numerical solutions; dotted lines: local asymptotic solutions 
(4.1). 

between the disturbance and the basic flow. Similar behaviour has been observed 
elsewhere (e.g. see GC and references therein). Local singular solutions are displayed 
as dotted lines. They show that a finite-time singularity occurs. Moreover, for 8 = 60" 
and 75", the local singular solutions fit rather well with the corresponding numerical 
results over a substantial range of time, even though they were expected to be valid 
only near the singularity time. For the inviscid case, we have also worked out a 
power-series solution of the form C une(2n+1)T. The recursion relation for the a, is given 
in Appendix C. Although this form of solution is strictly only valid when 7 + -00, it 
is found to have a rather sizeable range of validity when truncated at high order, say 
40-50th order. This provides a check on the numerical results (see also Wu 1991). For 
8 = 60" and 75" the power-series solutions were able to reproduce the first oscillatory 
cycle. 

We note that at 8 = 60", a resonant triad interaction can occur if the initial 
disturbance includes an O ( E ~ )  two-dimensional eigenmode with a wavenumber 2a 
and a phase velocity c (Goldstein & Lee, 1992; Wu, 1992). However, in the present 
problem this resonance does not occur. This is because such a two-dimensional mode 
is not present in our initial disturbance, and when excited by nonlinear quadratic 
interactions, it only has a magnitude of O(c2) - weaker than the O ( c $ )  strength 
required for a resonant interaction. 

We now move onto the viscous case. As illustrated in figure 5 for 6 = 60" and a 
wavenumber E = 1.2 on the right-hand branch of curve A, we find that increasing the 
viscosity generally delays the occurrence of the singularity. Note that gr is positive 
for these parameter values, so the singularity cannot be eliminated no matter how 
large A is. Figure 6 shows results for 8 = 30", and the same wavenumber = 1.2; the 
parameter gr  is now negative. As can be seen, viscosity delays the time to singularity 
formation if A is not too large. However, once 1 exceeds a critical value? (between 

-f No attempt has been made to determine the critical value precisely because it is very CPU 
intensive to integrate the amplitude equation for 1 close to its critical value. 
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F~GURE 5. Lnldl us. the scaled time 7 for 2 = 1.2 and 8 = 60": (a) I = 0;  (b) 1 = 10; (c) 1 = 30; 
( d )  11 = 50. Solid lines: numerical solutions; dotted lines: local asymptotic solutions (4.1). 
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FIGURE 6. LnlAl us. the scaled time 2 for 2 = 1.2 and 8 = 30". 1 = 10, 30, 35, 50, 80, and 

Solid lines: numerical solutions; dotted lines : local asymptotic solutions (4.1). 
120. 

30.0 and 35.0 in this case), the amplitude decays exponentially, i.e. at large times 
log (A1 - -cJ or (A( - e-coz, where co > 0 is a constant. This is significantly different 
from the two-dimensional case, where viscosity causes the disturbance to saturate at 
a finite amplitude. 

Surprisingly, although the waves decay exponentially, in Appendix D we show that 
the 'slip' velocity, (D l), generated by accumulated nonlinear effects grows linearly with 
time. This is illustrated in figure 7, where we plot a suitably scaled streamwise velocity 
jump. It follows that in the outer region the spanwise-dependent mean flow driven by 
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FIGURE 7. 'Vortex sheet' development: AU us. the scaled time 2. Parameters: h = 1.2, B = 30", and 

1 = 35, 50, 80 and 120. Solid lines: numerical solutions; dotted lines: asymptotic slopes. 

the slip velocity grows linearly with time, while the longitudinal vortex equilibrates 
at a finite amplitude (see also Smith & Blennerhassett 1992)t. We conclude that the 
distortion has stabilized the basic flow, with the result that the Rayleigh modes start 
to decay. We also note that the growing velocity jump can be interpreted as a growing 
'vortex sheet'. This is intriguing since the development of intense shear layers is one of 
the characteristic precursors to the formation of small-scale turbulence. This in turn 
raises the question of the stability of the thin shear layer to secondary disturbances. 

Figure 8 displays results for 8 = 60" and E = 0.8 on the right-hand branch of 
curve A. For this case 8, is again negative, and viscosity plays a similar role as in 
figure 6. It is worth noting that at moderate values of 1, viscosity can induce rather 
violent oscillations. However, the oscillations gradually disappear as 1 increases, 
and ultimately the disturbance decays when 1 is sufficiently large. The calculations 
presented here show that both 1 and the sign of gr determine the terminal form of the 
solution to (3.99). This conclusion is supported by other numerical calculations using 
artificial coefficients which we do not report here. However, it is worth observing 
that because gr  depends on 8, for any given wavenumber ti and sign of C vjpyJ, it is 
always possible to find some 8 such that g, > 0, i.e. such that a finite-time singularity 
can occur. In this sense, blow-up is more common than in the two-dimensional case 
(cf. Wu & Cowley 1993). 

Of course, once the singularity occurs, our theory ceases to be valid. Nevertheless, 
the finite-time singularity indicates that an explosive growth is induced by nonlinear 
effects, and we suggest that this nonlinear blow-up may be the precursor to the 
bursting phenomena observed in experiments (e.g. Merkli & Thomann 1975; Hino 
et al. 1976). Moreover, as GC argue, the present theory does not break down until 
the amplitude of the disturbance becomes order one, at which point the flow will be 
governed by the Euler equations. 

t For two-dimensional critical layers there can also be a linear growth in the mean flow; however 
at leading order this is a direct result of non-parallelism rather than nonlinear interactions within 
the critical layer (Goldstein & Hultgren 1988). 

4 
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FIGURE 8. LnlAl us. the scaled time 7 for = 0.8 and 8 = 60". 1 = 0, 5,  20, 120, 180, 240 and 320. 

Solid lines: numerical solutions; dotted lines: local asymptotic solutions (4.1). 
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FIGURE 9. LnlAI us. the scaled time t for Cr = 1.2 and Q = 45". 1 = 0.1, 10, 30, and 45. 

Finally, we examine the special case 6 = 45", again taking ti = 1.2 on the right-hand 
branch of curve A as an example. This propagation angle is special because in both 
the inviscid (A = 0) and viscous ( I  = +a) limits, the nonlinear term in the amplitude 
equation vanishes. This does not occur, however, when 0 < A < fa. In figure 
9, we depict evolution curves for four values of 2. The solutions clearly appear to 
develop a finite-time singularity. However, as A is increased the solutions change 
significantly. As shown in figure 10, for sufficiently large I ,  the solutions can evolve 
into a periodic oscillation without tending to a definite limit. In order to demonstrate 
that these solutions are not a numerical artifact, results are displayed at two different 
resolutions. We note that for A = 50.0, the amplitude exhibits a rather 'chaotic' 
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FIGURE 10. Lnldl us. the scaled time i for 8 = 1.2 and 6 = 45". rZ = 50, 60, and 100: to display the 
graph clearly, the curves for 1 = 60 and 100 are shifted upwards by three and five units respectively. 
The integration time steps for Iz  = 60 and 100 are 0.05 (solid lines), and 0.1 (dotted lines). The 
integration time steps for 1 = 50 are 0.025 (solid line) and 0.05 (dotted line). 

transient state before relaxing into a periodic oscillation. This 'chaotic' transient 
becomes less noticeable, and ultimately disappears, as I is increased further. 

4.4. The relationship with wavelvortex interactions 
A feature of critical-layer analyses is the fact that surprisingly large mean flows 
and vortices are generated, e.g. in our analysis a spanwise-dependent mean flow is 
generated which is as large as the fundamental disturbance. Similarly a feature of 
the wave/vortex interaction theory of Hall & Smith (1991) is that small-amplitude 
disturbances can modify the mean flow by an order-one amount. Further, both 
Rayleigh-wave/vortex interactions and our non-equilibrium critical-layer theory are 
based on almost-neutral three-dimensional instability waves and involve critical layers. 
It therefore seems natural to ask whether there is a link between the two theories. 
In particular, since the theory of Hall & Smith (1991) concerns the slow nonlinear 
evolution of weakly nonlinear travelling waves, could an initially linear disturbance 
consisting of a pair of oblique waves evolve through an 'unsteady' or 'non-equilibrium' 
critical-layer stage en route to a wave/vortex interaction? This is of course related to 
the questions : 

(a) Can a wave/vortex interaction involving Rayleigh waves be established in the 
first place? 

(b) Are the weakly nonlinear travelling waves in such a wave/vortex interaction 
stable? 

Before partially addressing at least the first of these questions it is instructive to 
determine the range of validity of (4.7). From (1.3) and (4.6) it follows that the 
timescale over which the growth rate evolves, as specified by Z; = 0(1), is 

z -70 - O ( e f R f )  , (4.16) 
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while from (1.1) and (B 7) the timescale over which the disturbance amplitude evolves, 
as specified by t ,  = 0(1), is 

z - TO - O ( d  R-3) . (4.17) 
Our theory assumes that these two timescales are distinct. This is no longer the case 
if 

e -  ~ - i ,  i.e. A- ~f , (4.18) 
since both timescales are then O(R-i). We conclude that when 

R+ << e << R-' , or equivalently 1 << A << R$ , (4.19) 

the evolution can be described by (4.7). The validity of the full integro-differential 
form of the amplitude equation (3.87) is of course restricted only by A << Ri .  

From (4.6) the disturbance amplitude corresponding to the scaling (4.18) is O ( L f  r),  
i.e. O ( R - f ) .  In terms of the global Reynolds number Re = R2, the disturbance 
amplitude is O(Re-&),  which we note is the (corrected) wave amplitude scale identified 
by Hall & Smith (1991) for Rayleigh-wave/vortex interactions. While a direct 
connection with that work is not possible, we note that as part of a study of weak 
Rayleigh-wave/vortex interactions, Brown, Brown & Smith (1993) have examined 
the scaling (4.18). Although they studied an equivalent spatial stability problem, in 
terms of our notation they effectively considered a problem with the three timescales, 
t = Rz, R ~ z  and z. Their amplitude equation is similar to (4.7), but because the zl  
and timescales have merged, the coefficient of 2 in (4.7) becomes got,. Also, as 
a result of a viscous sub-stokes layer adjacent to the wall which makes an O(R-4) 
correction to the growth rate (e.g. Cowley 1987), there is an additional linear term 
proportional to A. 

An important property of the amplitude equation derived by Brown et al. (1993) 
is that in one limit it can be reduced to a small-amplitude form of the wave/vortex 
interaction equations, while in another limit it reduces to (4.7), which itself is the 
'highly viscous' limit of the full integrodifferential equation (3.87). A mathematical 
link between the wave/vortex interaction equations, and the non-equilibrium critical- 
layer equations is thus made. 

Let us now return to the discussion started in $ 1  concerning a normal mode of 
amplitude eo introduced at a time on one of the left-hand branches of the neutral 
curves. We note : 

(a)  if co = O(R-a), then the evolution of the disturbance is described by the 
nonlinear equation derived by Brown et al. (1993); 

(b) if eo = o(R-i) ,  but loge;' << R, the nonlinear evolution of the disturbance is 
described by (3.87), or its limiting forms (4.7) and (3.92). 

In the second case we have seen either that the disturbance hits a finite-time 
singularity, or that the mean flow is stabilized with the result that the disturbance 
decays exponentially. In both cases the final behaviour is described by much more 
rapid timescales than would be necessary for the flow to evolve to a slowly varying 
wave/vortex interaction. Thus at least for a disturbance consisting of a pair of equal- 
amplitude oblique waves, it seems that for a broad range of initial amplitudes the flow 
does not develop into the wave/vortex interaction regime of Hall & Smith (1991). 
However, note that when exponential decay sets in near a left-hand neutral curve, 
we anticipate that the disturbance will start to grow again over the slow timescale r1 
as a result of an increase in the linear coefficient of (4.7). The subsequent nonlinear 
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evolution of such a disturbance will depend, inter alia, on the form of the critical 
layer when the flow becomes nonlinear again. 

X. Wu, S .  S .  Lee and S .  J .  Cowley 

5 Discussion and conclusions 
We have derived an integro-differential amplitude equation, i.e. (3.99), that describes 

the evolution of a pair of oblique waves in inviscidly unstable shear layers such as 
Stokes layers. We have assumed that nonlinear effects become important while the 
local growth rate of the disturbances is small (although not too small), and have 
extended the previous analysis of GC by including viscosity. We have also relaxed 
the condition that the critical layer(s) occur at inflexion points, although our results 
remain valid if they do (e.g. as is the case for free shear layers). However, we require 
that the spanwise wavenumber j? is not too small so that the nonlinearity associated 
with the logarithmic branch point singularity is much weaker than that associated 
with the pole. A scaling argument, similar to that in Wu & Cowley (1993), shows 
that this condition is violated when 

p - O(cf )  , 
because the nonlinearity from the simple-pole singularity is then as strong as that 
from the branch-point singularity. This problem has been considered by Wu (19934 
who allows the disturbance amplitude to be modu1a:ed both in the spanwise direction 
on a scale 2 = C~Z, and in time on the scale t ,  = ez t .  

Numerical solutions of the amplitude equation (3.99) either blow-up in a finite- 
time singularity, or decay exponentially at large times. Similar behaviour is found 
analytically for the reduced equation (4.7) that describes the amplitude evolution in 
the very viscous limit. Equilibrium solutions to the amplitude equations could not be 
found, which suggests that nonlinear effects do not lead the disturbance to saturate. 

A direct comparison with experiment is hard, since we have been unable to 
find experiments on Stokes layers studying the evolution of well-controlled initial 
disturbances. Indeed, in most experiments the instabilities are allowed to develop from 
background noise. However, in an attempt to relate our theory to such experiments, 
let us suppose that instability modes are excited continuously. Then, because there 
are well-defined left-hand branches to the neutral curves A and B in figure 1, there 
are specific times when new modes with a particular wavenumber can be excited. Let 
us assume that these modes are excited as soon as they are ‘viable’. 

If the initial amplitudes of these disturbances are extremely small, then their 
evolution as the Stokes layer slowly changes can be fully described by linear theory 
- eventually the disturbances either equilibrate at a finite amplitude or they decay 
on reaching the right-hand branch of a neutral curve (Cowley 1987). However, if their 
initial amplitude is slightly larger, then the evolution of the disturbances can become 
nonlinear near the right-hand branch of the neutral curve. Since the most rapidly 
growing linear modes are two-dimensional, then on the basis of linear theory, such 
disturbances are likely to have the largest amplitudes. This two-dimensional case has 
been considered by Wu & Cowley (1993) who show that for disturbances with certain 
wavelengths a finite time-singularity can develop no matter how large viscous effects 
are. However, of possibly greater importance to experimentally observed transition is 
the fact that an inviscid disturbance consisting of a resonant-triad of waves can be 
preferentially amplified by means of parametric resonance so that small-amplitude 
oblique modes can attain large amplitudes through a period of super-exponential 
growth (Goldstein & Lee 1992; Wu 1992). Further, Goldstein & Lee (1992) and 
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Wu (1992) have shown that once the oblique waves are sufficiently large, a nonlinear 
backreaction causes such a resonant-triad of waves to always develop a finite-time 
singularity - as hypothesized above this may lead to transition to turbulence (see 
also Goldstein & Lee 1992). Wu’s (1992) analysis was inviscid, and it seems hard 
to assess analytically the influence of viscosity on this conclusion, because a study 
of the viscous resonant triad would involve extremely complicated algebra. Rather 
than take such an approach here, we have supposed that there is a preferential 
mechanism for exciting three-dimensional disturbances, e.g. small grooves in the 
plate. Of course, it may turn out that our analysis is directly relevant to the viscous 
resonant-triad case if oblique mode interactions become dominant in one of the later 
stages of  evolution.^ Whatever the method of excitation our results show that for 
moderate-sized disturbances (a) for a range of ‘obliqueness’ angles the disturbances 
decay as a result of viscous effects, but (b )  for other angles a finite-time singularity 
arises accompanied by an explosive increase in wave-amplitude. For slightly larger 
disturbances viscous effects have no time to act, and for all obliqueness angles there 
is an explosive increase in wave amplitude. 

At even larger levels of background noise a disturbance of given wavelength will 
become nonlinear at times well before the right-hand branch of the neutral curve, 
and our theory is not applicable. A further increase in the background disturbance 
level means that nonlinear effects need to be included at times near the left-hand 
branch of the neutral curve. Again, two-dimensional disturbances have the most 
rapid linear growth. However, over much of the left-hand branch of curve A, the 
two-dimensional critical layer is regular, and so nonlinear effects lead to algebraic 
rather than exponential growth (e.g. Huerre & Scott 1980; Churilov & Shukhman 
1987~; Goldstein & Hultgren 1988). Therefore, three-dimensional instabilities are 
potentially important, although a full analysis would involve testing the stability of 
the flow with a two-dimensional, quasi-equilibrium, critical layer to secondary three- 
dimensional disturbances. This is an extensive calculation, which we do not tackle 
here. Moreover, as Kelly & Maslowe (1970), Killworth & Mclntyre (1985) and Haynes 
(1985) have observed, the quasi-equilibrium critical layer itself may be unstable to 
very high-frequency two-dimensional disturbances with wavelengths comparable to 
the thickness of the critical layer. 

Instead we note that when three-dimensional disturbances are preferentially excited 
so that their evolution becomes inviscidly nonlinear near a left-hand branch, explosive 
growth of the amplitude will again occur for all pairs of oblique modes. However, 
if the initial disturbance is sufficiently large, then viscous effects mean that explosive 
growth can only occur for a range of obliqueness angles. We believe that this is 
experimentally significant beyause it implies that for a relatively large range of initial 
disturbances, i.e. eo = o(R-5) but loge;’ << R f ,  there is a spread of obliqueness 
angles for which viscous effects cannot prevent explosive growth. This is so whether 
or not viscous effects can force two-dimensional disturbances to evolve into quasi- 
equilibrium states. For even larger initial disturbances, i.e. eo = O(R-a),  the amplitude 
equation is modified to that of Brown et al. (1993). 

Our results suggest that experimental observations are likely to depend on the 
background level of disturbances. In particular, the lower the background level of 

t In the later stages of the inviscid resonant triad it is the self-interaction term in the oblique mode 
equation which causes the singularity. The rapid growth of the oblique mode is then transferred to 
the two-dimensional mode through the backreaction terms in the two-dimensional equation. This 
results in a singularity in the two-dimensional mode. 



714 
disturbance, the later in the oscillation cycle that nonlinear disturbances should be 
observed. For example, Monkewitz & Bunster (1987) note that ‘the first visible finite 
amplitude disturbances appear shortly before and around flow reversal at the edge 
of the boundary layer’; our theory when applied close to the right-hand branch 
of curve A should be relevant in this case. On the other hand, Akhavan, Kamm 
& Shapiro (1991a, b) note that at relatively large Reynolds numbers ‘turbulence 
appeared explosively towards the end of the acceleration phase’. This is a little earlier 
than could directly be explained using our theory applied to the left-hand branch of 
curve A, but we note that Akhavan et al. (1991a,b) conducted their experiments on 
finite-width Stokes layers in a pipe, and that their ensemble-averaged velocity profiles 
differ from the laminar profiles that we have assumed. 

As in GC, an important feature of our results is that nonlinear interactions inside 
the critical layers generate in the main part of the flow both a spanwise-dependent 
mean flow of the same size as the fundamental wave, and a longitudinal vortex. We 
note that a relatively strong spanwise-dependent mean flow was observed by Hino et 
al. (1983) in a finite Stokes layer between two plates. Hino et al. (1983) also suggested 
that the vortex structures and the bursting processes that they observed in Stokes 
layers are similar to those observed in turbulent boundary layers. This is possibly not 
surprising given (a) that our theory is applicable to any high-Reynolds-number shear 
flow that supports Rayleigh waves, and (b) that the large-scale coherent structures in 
the outer region of a turbulent boundary layer may generate such shear flows in the 
wall region. Thus the results obtained here may be applicable to the understanding 
of wall-layer phenomena in turbulent boundary layers such as ‘streaky’ vortices and 
high-frequency bursts. 

In addition we recall that the formation of A-vortices in boundary-layer transition 
has been linked with the secondary instability of Tollmien-Schlichting waves and lon- 
gitudinal vortices to high-frequency (Rayleigh) modes, e.g. Betchov (1960), Greenspan 
& Benney (1963). Since the Tollmien-Schlichting waves and longitudinal vortices are 
quasi-two-dimensional in the sense that their wavelengths are much larger than the 
thickness of the boundary layer, a slight modification to our analysis should yieId an 
alternative nonlinear approach to describing the ‘spike’ stage of transition. Moreover, 
the generalization of the analysis to three-dimensional basic states should also make 
it possible to extend Hall & Horseman’s (1991) linear secondary instability analysis of 
Gortler vortices into the nonlinear regime. We also note that it is straightforward to 
extend our analysis to compressible flow. In particular, essentially the same amplitude 
evolution equation, i.e. (3.99), is obtained since the perturbation velocities in the criti- 
cal layer are subsonic. Our results are especially applicable to supersonic compressible 
flows since the most rapidly growing linear disturbances are then three-dimensional. 
Moreover, we note that the same amplitude equation applies to the interaction of a 
pair of helical modes spinning in opposite directions in axisymmetric shear layers, 
e.g. axisymmetric jets. The reason is that the critical layer there, though annular, is 
locally ‘flat’ in the sense that the variation of the flow is much more rapid in the 
radial direction than in the circumferential direction. 

Another consequence of our work is its relationship to the Rayleigh-wave/vortex 
interaction of Hall & Smith (1991). An implicit assumption in the Hall-Smith theory 
is that the weakly nonlinear Rayleigh wave, whose slow evolution forces the order-one 
change in the mean flow, is stable. At fist  sight this assumption seems reasonable 
given, for instance, that linearly unstable Gortler vortices can evolve through a weakly 
nonlinear stage to a strongly nonlinear stage in which the mean flow is distorted by 
an order-one amount (Hall 1991). 

X .  Wu, S. S .  Lee and S. J .  Cowley 
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Initially we anticipated that our linear disturbances would first evolve through the 
weakly nonlinear stage described in this paper and then develop into a wave/vortex 
interaction at later times (e.g. as a result of saturating into an equilibrium state). 
However, we found that the disturbances either evolve to an ‘Euler’ stage through 
a finite time singularity (GC), or they decay exponentially. Similar results have 
been obtained independently by Brown et al. (1993) for disturbances which become 
nonlinear in the l A ~ l  = O(R-f)  asymptotic regime near a left-hand neutral curve. 

We conclude that for a wide range of initial amplitudes, a pair of oblique modes 
do not evolve to a Rayleigh-wave/vortex interaction, even though such a disturbance 
seems a natural initial condition for such flows. It remains to be checked that this is 
still the case for a pair of oblique waves of unequal amplitude. In addition, the effect 
of both streamwise and spanwise modulation of the waves should be investigated, 
especially on the form of the finite-time singularity. 

The authors would like to thank Professor J.T, Stuart, Dr M.E. Goldstein and 
Professor S.N. Brown for helpful discussions. The referees are aka thanked for their 
useful comments. 

Appendix A 
In this appendix we combine our results for the Stokes layer with those of GC for 

a shear layer, to deduce the viscous version of the amplitude evolution equation for 
a shear layer. 

First, we introduce a viscous parameter 3, by scaling the local Reynolds number 
R = &A/v in the following way: 

Then the amplitude equation is 
R-‘ = Ae . (A 1) 

(A 2) 

where the kernel I?: is defined by (3.85) - the suffix j has been dropped because there 
is only one critical layer in a free shear layer. The parameter s1 involved in r?- now 
should be defined by 

Readers should consult GC for the definitions of 6, $, U, etc. The constants iz and 
y are defined by equations (3.70) and (3.71) of GC respectively. 

Appendix B 

reduces to (4.4) as 3, + +a. 

into the following sum: 

In this appendix, we show that the integro-differential amplitude equation (3.87) 

In order to obtain an asymptotic estimate of the nonlinear term, we first split it 

+oo +m 

N 1 1 K j ( t ,  V M ) A ( ~ ~  -r)~(t,-e--ut)~*(tl--2e--ut)drdrl 

= N(’) + N(’) + 2 sin20[N(*) + N(3)]  + 8 sin4 ON(4) + N(’) , (B 1) 
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where 
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N"' = 2 l+m i+m r?-'O'(t, q)t3A(tl  - t )A(t l  - 5 - q)A*(tl - 25 - q)d<dq , (B 2) 

and N5) denotes the rest of the nonlinear term, i.e. the part associated with the fourth, 
fifth, seventh and eighth terms of the right-hand side of (3.85). 

In order to estimate these integrals as il + co, it is necessary to make one of the 
following changes of variables : 

substitution I: 

2 -  

4 = n - s g  , q = A f q  ; 
substitution 11: (B7) and 

(B 9) 
The appropriate substitution must be chosen in order that the resulting integrals are 
convergent. We find that substitution I1 converts the nonlinear terms into a classical 
cubic form, i.e. the history effects are damped out. 

Applying substitution I1 to No) and M5), and taking the limit A + +a, we have 

1 -  < = 1-75 , q = A - f q  . 

and 

where Bo and Co are constants defined by convergent integrals. However if we perform 
substitution I1 in W ) ,  the resultant integral diverges. Instead, we integrate N( ' )  by 
parts with respect to q,  and write it in the form: 
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We now perform substitution I and take the limit ,I -, +a; we obtain 

where pi = ia2u:(yf). Note that substitution I leaves the integral convergent by 
virtue of the exponential decay of A as 4 -+ fco. 

In the case of N2), we first make the transformation (q  - [) + q to obtain 

N@) = l'l'%+m 52e-2Sl t3-h  t2(V+0-2SI &3Sl t12 

xA(ti--5)A(ti-4:-r-5)A'(t~--24:-~--r)d~d4:dy 
[2<rle-2s~t'-3~~ ~ * ( v + O - ~ S I L ' ~ - ~ S ~  5C2 

(B 14) 
Performing substitutions I1 and I into the first and second integrals respectively, we 
find that the first term is order A-;, while the second term is order A-'. More precisely, 

+l+l+l+w 
xA(ti -5)A(ti -5-~-5)A'(ti  -2<-y--i)did<dq . 

r(+l /+w JAG, - q)I2dq + O(A-+) . (B 15) 
4 1  

" 2 )  = J-lp-3 

9 x 2 4  0 

In order to estimate N3) we first integrate by parts to obtain 
-to) i c o  

e-5s153-3slr2q 3 W3) = - l 1 5 4 1  -5)A(t,--r-r)A*(t1-25-y)d5dy 

5 ~ 4 t i  --5)A(ti -4: -q)A*(ti -25 -q)d5dq - i + m i + m  e-5sltJ-3slc2q 2 

+ ~+~'mI?(o) (L q )  6' (6~1 ti) [r i' + i3 - t2i  -2tql- <i2]e-3s16r2 

xA(ti -5)A(ti -5 -q)A'(ti -25-q)dSdtdq . (B 16) 
Performing subst$ution I1 in the first and third terms, we can show that these two 
terms tend to I - J D o A ( A ( ~ ,  where Do is a constant defined by a convergent integral. 
The second term is similar to N ( ' ) ;  the only difference is that the exponent 
now replaces 2 ~ 1 5 ~  of N(' )  (see (3.68) for the definition of k")). We conclude that as 
R + fa, 

N(3) - O ( X ? )  . (B 17) 
Finally for Nc4) we first perform the transformation ( q  - 0) + q, and then we write 

it in three parts: 

N(4)=1'~d51td~e-3slg~z 1' d q l ' w  e-2S1t3-3Sl g2(o-V)-sl(2o3f3rU2) 

x(~-5)El+6~i(4:-i)S2lA(~i--5)A(ti-4:+~-u)A*(~i--25+~-~)d~ 
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By use of substitution I1 we can show that the first and the second terms tend to 
(I-jEoAIA12) as I + +a; here Eo is again a constant defined by a convergent integral. 
Use of substitution I in the third term shows that it contributes a leading-order term 
of order I-' : 

X .  Wu, S .  S. Lee and S .  J .  Cowley 

Combining (B 15) and (B 19), and using (B l), (B lo), (B ll),  (B 13) and (B 17), we 
obtain the final estimate for N: 

Using (B 20), (3.87) and (3.15) we obtain (4.4). 

Appendix C 
As 7 + -co, the amplitude equation (3.99) has a solution of the following form: 

n=O 

Substituting the above expression into (3.99), equating the coefficients of e(2n+1)7, 
and setting a. = 1, we obtain the recursion relation 

n l  

n = 0 , 1 , 2  ,... , (C 2) 
where 

r+m r+a, 

For simplicity, we only consider the inviscid limit A = 0. In this case, we can integrate 
Q(k, 1, n) analytically to yield 

6( 1-2 sin26) 1-4 sin4@ 
(n+k-1+1)(2n-1+2)4 + (n+k-i+1)2(2n--1+2)3 

Appendix D 
In this appendix, we show that although the wave decays exponentially, the 

nonlinearly induced streamwise slip velocity (3.49) actually grows linearly with the 
time tl.  Without loss of generality, we consider 

r+m rn 

This is essentially the shear produced by nonlinear interactions inside the critical 
layer. By means of the transform (tl - q)  + q,  we can write AU as the sum of three 
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terms 

where 
A U = t , A I - A 2 - A 3 ,  

&(td  = J" IA(r)12dr ll-q e-2sic3d5 , 
-cc 

Since the integrands in (D3) are positive, we have that 

A1 I [: lA(q)12dq 0 e-2s1i3d[ I 1: 1A(q)I2dq i+m e-2s113d[ * (D6) 

Similarly we find that 

and 

The estimates (D6)-(D8) mean that only the term involving A ,  contributes to the 
leading-order term in (D 1). Moreover, A1 (tl) is a monotonically increasing function. 
Hence after a little algebra we conclude from (D6) that as tl -+ +a, 

AI(t1) --+ 1: ~~(~)~2dq / i*e -2s1 '3d~  0 > 0 , (D 9) 

and that 

where K = A1(+oo). 
AU -+ K t l  , (D 10) 

R E F E R E N C E S  
AKHAVAN, R., KAMM, R.D. & SHAPIRO, A.H. 1991a An investigation of transition to turbulence in 

bounded oscillatory Stokes flow. Part 1. Experiments. J. FZuid Mech. 225, 395. 
AKHAVAN, R., KAMM, R.D. & SHAPIRO, A.H. 1991b An investigation of transition to turbulence in 

bounded oscillatory Stokes flow. Part 2. Numerical simulations. J .  Fluid Mech. 225, 423. 
BENNEY, D.J. 1961 A nonlinear theory for oscillations in a parallel flow. J. Fluid Mech. 10, 209. 
BENNEY, D.J. 8c BERGERON, R.F. 1969 A new class of non-linear waves in parallel flows. Stud. Appl. 

BETCHOV, R. 1960 On the mechanism of turbulent transition. Phys. Fluids 3, 1026. 
BODONYI, Q.J., SMITH, F.T. & GAJJAR, J. 1983 Amplitude-dependent stability of a boundary layer 

BROWN, P., BROWN, S.N. & SMITH, F.T. 1993 On the starting process of strongly nonlinear vor- 

BROWN, S.N. & STEWARTSON, K. 1978 The evolution of the critical layer of Rossby wave. Part 11. 

CHURILOV, S.M. & SHUKHMAN, LG. 1987a The nonlinear development of disturbances in a zonal 

M a t h  48, 181. 

with a strong non-linear critical layer. IMA J. Appl. Maths 30, 1-19. 

tex/Rayleigh wave interactions. Mathematica (to appear). 

Geophys. Astrophys. Fluid Dyn. 10, 1. 

shear flow. Geophys. Astrophys. Fluid Dyn. 38, 145-175. 



720 

CHURILOV, S.M. & SHUKHMAN, I.G. 1987b Nonlinear stability of a stratified shear flow: a viscous 
critical layer. J .  Fluid Mech. 180, 1. 

CHURILOV, S.M. & SHUKHMAN, I.G. 1988 Nonlinear stability of a stratified shear flow in the regime 
with an unsteady critical layer. J .  Fluid Mech. 194, 187. 

COWLEY, S.J. 1987 High frequency Rayleigh instability of Stokes layers. In Stability of Time 
Dependent and Spatially Varying Flows (ed. D.L. Dwoyer & M.Y. Hussaini), p.261. Springer. 

GAJJAR, J.S.B. 1990 Amplitude-dependent neutral modes in compressible boundary layer flows. 
NASA Tech. Mem. 102524. 

GAJJAR, J.S.B. & COLE, J.W. 1989 Upper branch stability of compressible boundary layer flows. 
Theor. Comp. Fluid Dyn. 1, 105. 

GAJJAR, J.S.B. & SMITH, F.T. 1985 On the global instability of free disturbances with a time-dependent 
nonlinear viscous critical layer. J .  Fluid Mech. 157, 53. 

GOLDSTEIN, M.E. & CHOI, S.-W. 1989 Nonlinear evolution of interacting oblique waves on two- 
dimensional shear layers. J .  Fluid Mech. 207, 97. Corrigendum, J .  Fluid Mech. 216, 1990, 659 
(referred to herein as GC). 

GOLDSTEIN, M.E., DURBIN, P.A. & LEIB, S.J. 1987 Roll-up of vorticity in adverse-pressure-gradient 
boundary layers. J .  Fluid Mech. 183, 325. 

GOLDSTEIN, M.E. & HULTGREN, L.S. 1988 Nonlinear spatial evolution of an externally excited 
instability wave in a free shear layer. J .  Fluid. Mech. 197, 295. 

GOLDSTEIN, M.E. & LEE, S.S. 1992 Fully coupled resonant-triad interaction in an adverse-pressure- 
gradient boundary layer. J .  Fluid Mech. 245, 523. 

GOLDSTEIN, M.E. & LEIB, S.J. 1988 Nonlinear roll-up of externally excited free shear layers. J .  Fluid 
Mech. 191, 481. 

GOLDSTEIN, M.E. & LEIB, S.J. 1989 Nonlinear evolution of oblique waves on compressible shear 
layers. J .  Fluid Mech. 207, 73. 

GOLDSTEIN, M.E. & WUNDROW, D.W. 1990 Spatial evolution of nonlinear acoustic mode instabilities 
on hypersonic boundary layers. J .  Fluid Mech. 219, 585. 

GREENSPAN, H.P. & BENNEY, D.J. 1963 On shear layer instability, breakdown and transition. J .  
Fluid Mech. 15, 133. 

HALL, P. 1978 The linear instability of flat Stokes layers. Proc. R. SOC. Lond. A359, 151. 
HALL, P. 1983 On the nonlinear stability of slowly varying time-dependent viscous flows. J .  Fluid 

HALL, P. 1991 Gortler vortices in growing boundary layers: the leading edge receptivity problem, 

HALL, P. & HORSEMAN, N.J. 1991 The linear inviscid secondary instability of longitudinal vortex 

HALL, P. & SMITH, F.T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer 

HAYNES, P.H. 1985 Nonlinear instability of a Rossby-wave critical layer. J .  Fluid Mech. 161, 493. 
HAYNES, P.H. & COWLEY, S.J. 1986 The evolution of an unsteady translating nonlinear Rossby-wave 

HICKERNELL, F.J. 1984 Time-dependent critical layers in shear flows on the beta-plane. J .  Fluid 

HINO, M., KASHIWAYANAGI, M., NAKAYAMA, A. & HARA, T. 1983 Experiments on the turbulence 

HINO, M., SAWAMOTO, M. & TAKASU, S. 1976 Experiments on transition to turbulence in an 

HUERRE, P. & SCOIT, J.F. 1980 Effects of critical layer structure on the nonlinear evolution of waves 

HULTGREN, L.S. 1992 Nonlinear spatial equilibration of an externally excited instability wave in a 

KACHANOV, YuS. 1987 On the resonant nature of the breakdown of a laminar boundary layer. J. 

KACHANOV, Yu.s. & LEVCHENKO, V.YA. 1984 The resonant interaction of disturbances at laminar- 

KELLY, R.E. & MASLOWE, S.A. 1970 The nonlinear critical layer in a slightly stratified shear flow. 

X .  Wu, S. S. Lee and S .  J .  Cowley 

Mech. 126, 357. 

linear growth and the nonlinear breakdown stage. Mathematika 37, 151. 

structures in boundary-layers. J .  Fluid Mech. 232, 357. 

transition. J .  Fluid Mech. 227, 641. See also ICASE Rep. 89-22. 

critical layer. Geophys. Astrophys. Fluid Dyn. 35, 1. 

Mech. 142, 431. 

statistics and structure of a reciprocating oscillatory flow. J .  Fluid Mech. 131, 363. 

oscillatory pipe flow. J .  Fluid Mech. 75, 193. 

in free shear layers. Proc. R .  Soc. Lond. A371, 509. 

free shear layer. J .  Fluid Mech. 236, 635. 

Fluid Mech. 184, 43. 

turbulent transition in a boundary layer. J .  Fluid Mech. 138, 209. 

Stud. Appl. Maths 49, 301. 



Three-dimensional nonlinear instability of shear layers 721 
KERCZEK, C. VON & DAVIS, S.H. 1974 Linear stability theory of oscillatory Stokes layers. J. Fluid 

KILLWORTH, P.D. & MCINTYRE, M.E. 1985 Do Rossby-wave critical layers absorb, reflect or over- 

KLEBANOFF, PS., ' ~ S T R O M ,  K.D. & SARGENT, L.M. 1962 The three-dimensional nature of boundary 

LEIB, S.J. 1991 Nonlinear evolution of subsonic and supersonic disturbances on a compressible free 

LEIB, SJ. & C~OLDS~IN, M.E. 1989 Nonlinear interaction between the sinuous and varicose instability 

MANKBADI, R.R., WU, X. & LEE, S.S. 1993 A critical-layer analysis of the resonant triad in 

MASLOWE, S.A. 1986 Critical layers in shear flows. Ann. Rev. Fluid Me& 18,406. 

Mech. 62,753. 

rdect? J .  Fluid Mech. 161, 449. 

layer instability. J. Fluid Mech. 12, 1. 

shear layer. J .  Fluid Mech. 224, 551. 

modes in a plane wake. Phys. Fluids Al, 513. 

boundary-layer transition: nonlinear interactions. J. Fluid Mech. (to appear). 

MERKLI, P. & ~L~OMANN, H. 1975 Transition to turbulence in oscillating pipe flow. J .  Fluid Mech. 
a, 567. 

MONKEWITZ, PA. & B U N ~ R ,  A. 1987 The stability of the Stokes layer: visual observations and 
some theoretical considerations. In Stability of Tune dependent and spatially Varying Flows (ed. 
D.L. Dwoyer & M.Y. Hussaini), p.244. 

NISHIOKA, M., IIDA, S. & I~~IKAWA,  J. 1975 An experimental investigation of the stabfity of plane 
PoiseuilIe flow. J .  Fluid Mech. 72,731. 

SARIC, W.S. & THOMAS, AS.W. 1984 Experiments on subharmonic route to turbulence in boundary 
layers. In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), p.117. North-Holland. 

SCHUBAUER, G.B. & SICRAMSTAD, R K .  1947 Laminar boundary-layer d a t i o n s  and transition on 
a flat plate. NACA Rep. No. 909. 

SHUKHMAN, LG. 1989 Nonlinear stability of a weakly supercritical mixing layer in a rotating fluid. 
J .  Fluid Mech. 2@0,425. 

SHUKHMAN, LG. 1991 Nonlinear evolution of spiral density waves generated by the instability of 
the shear layer in rotating compressible fluid. J. Fluid Mech. 233, 587. 

SMITH, F.T. 1979 On the non-parallel flow stability of the Blasius boundary layer. Proc. R. Soc. 
Lond. -91. 

SMITH, F.T. & BLENNERHASSEIT, P. 1992 Nonlinear interaction of oblique three-dimensional 
Tollmien-waves and longitudinal vortices, in channel flows and boundary layers. Proc. R. 
Soe. Lond. A436,585. 

SMITH, F.T. & BODONIS, RJ. 1982a Nonlinear critical layers and their development in streaming-flow 
stability. J .  Fluid Mech. 118, 165. 

SMITH, F.T. & BODONYI, RJ. 19826 Amplitudedependent neutral modes in the Hagen-Poiseuille 
flow through a circulat pipe- Proc. R. Soc. h n d .  M, 463. 

SEWARTSON, K. 1981 Marginally stable inviscid flows with critical layers. ZMA J. Appl. Math  27, 
133. 

STEWARTSON, K. & S~UAIW, J.T. 1972 A nonlinear instability theory for a wave system in plane 
PoiseuiUe flow. J. Fluid Mech. 48,529. 

~ ~ O M A N S ,  P. 1979 Stability and transition of periodic pipe flows. PhD thesis, University of Cam- 
bridge. 

WV, X 1991 Nonlinear instability of Stokes layers. PhD thesis, University of London. 
Wu, X. 1992 The nonlinear evolution of high-frequency resonant-triad waves in an oscillatory 

WV, X. 1993a Nonlinear temporal-spatial modulation of near-planar disturbances in shear flows: 

Wu, X 19936 On critical-layer and diffusion-layer nonlinearity in the three-dimensional stage of 

WV, X & COWLEY, S.J. 1993 On the nonlinear evolution of instability modes in unsteady shear 

Stokes-layer at high Reynolds number. J .  Fluid Mech. 245, 553. 

formation of streamwise vortices J .  Fluid Me& (to appear). 

boundary layer transition. Prm. R. Soc. Lond. A, (to appear). 

layers: the Stokes layer as a paradigm. In prejmration. 




